A New Parameter Selection Method for Support Vector Machine Based on the Decision Value

نویسندگان

  • Linkai Luo
  • Dengfeng Huang
  • Hong Peng
  • Qifeng Zhou
  • Guifang Shao
  • Fan Yang
چکیده

Abstract To overcome the disadvantage of CV-ACC method that the high-density sample region may be close to the optimal hyper-plane, a parameter selection method for support vector machine (SVM) based on the decision value, named as CV-SNRMDV method, is proposed in this paper. SNRMDV is used as the criterion of cross-validation (CV) in our method, which is defined as the ratio between the difference of medians of decision values and the sum of the standard deviations from the medians. Compared with the traditional cross-validation accuracy (CV-ACC) method, CV-SNRMDV makes use of the information of sample distribution and decision value. Consequently CV-SNRMDV overcomes the disadvantage of CV-ACC. The experiments show our method obtains a better test accuracy on the simulated dataset, while the test accuracies on benchmark datasets are close to CV-ACC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sustainable Supplier Selection by a New Hybrid Support Vector-model based on the Cuckoo Optimization Algorithm

For assessing and selecting sustainable suppliers, this study considers a triple-bottom-line approach, including profit, people and planet, and regards business operations, environmental effects along with social responsibilities of the suppliers. Diverse metrics are acquainted with measure execution in these three issues. This study builds up a new hybrid intelligent model, namely COA-LS-SVM, ...

متن کامل

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

An Intelligence-Based Model for Supplier Selection Integrating Data Envelopment Analysis and Support Vector Machine

The importance of supplier selection is nowadays highlighted more than ever as companies have realized that efficient supplier selection can significantly improve the performance of their supply chain. In this paper, an integrated model that applies Data Envelopment Analysis (DEA) and Support Vector Machine (SVM) is developed to select efficient suppliers based on their predicted efficiency sco...

متن کامل

An artificial intelligence model based on LS-SVM for third-party logistics provider ‎selection

The use of third-party logistics (3PL) providers is regarded as new strategy in logistics management. The relationships by considering 3PL are sometimes more complicated than any classical logistics supplier relationships. These relationships have taken into account as a well-known way to highlight organizations' flexibilities to regard rapidly uncertain market conditions, follow core competenc...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Outlier Detection for Support Vector Machine using Minimum Covariance Determinant Estimator

The purpose of this paper is to identify the effective points on the performance of one of the important algorithm of data mining namely support vector machine. The final classification decision has been made based on the small portion of data called support vectors. So, existence of the atypical observations in the aforementioned points, will result in deviation from the correct decision. Thus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCIT

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010